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Abstract. Using high-resolution (1-km) hydrologic modeling of the 575,000-km?
Red-Arkansas River basin, the impact of spatially aggregating soil moisture imagery
up to the footprint-scale (32 to 64 km) of spaceborne microwave radiometers on
regional-scale prediction of surface energy fluxes is examined. While errors in surface
energy fluxes associated with the aggregation of soil moisture are potentially large
(> 50 W m~?2), relatively simple representations of subfootprint-scale variability are
capable of substantially reducing the impact of soil moisture aggregation on land
surface model energy flux predictions. This suggests that even crude representations of
subgrid soil moisture statistics obtained from statistical downscaling procedures can aid
regional-scale surface energy flux prediction. One possible downscaling procedure, based
on an assumption of spatial scaling (i.e. a power-law relationship between statistical
moments and scale), is demonstrated to improve TOPLATS prediction of grid-scale

surface energy fluxes derived from low-resolution soil moisture imagery.



1. Introduction

Growing evidence suggests that the accurate representation of surface soil moisture
conditions in the land surface component of weather prediction models can improve the
predictive abilities of such models within mid-continental areas like the Southern Great
Plains (SGP) region of the United States (Koster 2000). This potential has spurred
interest in developing a capacity to measure surface soil moisture from space. However,
the sharp contrast between the fine spatial scales at which surface soil moisture fields
exhibit heterogeneity (< 100 m) (Famiglietti et al. 1999) and the coarse resolution
scales at which current microwave antennae technology allows for observation of soil
moisture from space (> 50 km) (Jackson et al. 1999) poses a challenge to develop, and
clearly demonstrate the value of, a large-scale monitoring system system for surface
soil moisture. The scaling problem is twofold. First, land surface heterogeneity, in
concert with nonlinearities in the spaceborne soil moisture retrieval process, is capable
of introducing error in footprint-scale soil moisture products derived from spaceborne
microwave sensors (Njoku at al. 1996; Drusch et al. 1999a, 1999b; Crow et al. 2001).
Second, even if footprint-scale representations of soil moisture are free from error, the
loss of subfootprint-scale heterogeneity may degrade the utility of such representations
for weather and seasonal climate prediction.

The second impact can be further subdivided into two separate effects. Given
modeling evidence which suggests that sharp horizontal gradients in the land surface

energy balance can induce organized mesoscale circulations (OMCs) (Lynn et al. 1995;



Seth and Giorgi 1996; Weaver and Avissar 2001), the loss of soil moisture spatial
heterogeneity can potentially degrade the representation of mesoscale circulations in
weather prediction models. Following Giorgi and Avissar (1997), this impact is referred
to as the “dynamic” effect of land surface heterogeneity. The second potential impact on
weather prediction, referred to as the “aggregation” effect by Giorgi and Avissar (1997),
occurs when heterogeneous land surface parameters or state variables (such as soil
moisture) are processed through nonlinear model physics to obtain predictions of land
surface water and energy fluxes. This is variability whose dynamic effects are effectively
homogenized by the planetary boundary layer and does not produce a coherent
atmospheric response. Nevertheless, the presence of nonlinear relationships between
land surface variables and many surface fluxes dictates that grid-scale predictions
of fluxes will be sensitive to the presence, or absence, of subgrid-scale variability.
Discussions of aggregation effects within the U.S. Southern Great Plains often center
on soil moisture because of its critical role in driving the surface energy balance within
the region (Gupta et al. 1999), its nonlinear relationship with many land surface fluxes
(Wetzel and Chang 1987), and the large range of spatial scales at which it has been
observed to exhibit heterogeneity (Rodriguez-Iturbe et al. 1995; Crow et al. 2000).
Neither impact has been definitively shown to impact weather prediction within the
SGP region. The ability of land surface heterogeneity to generate significant atmospheric
circulations (i.e. the dynamic effect) appears highly dependent on synoptic conditions
(Fast and McCorcle 1991) and at least some modeling evidence suggests that realistic

patterns of land surface heterogeneity do not yield significant OMC’s within the SGP



region (Zhong and Doran 1997, 1998). In addition, the generation of OMC’s is typically
associated with heterogeneity at length scales coarser than 10 km (Avissar and Schmidt
1997) and is therefore potentially resolvable if synthetic aperture radiometry technology
is utilized in next-generation antennae design for microwave remote sensors (Le Vine et
al. 1995). In terms of the aggregation effect, Wetzel and Chang (1988), Famiglietti and
Wood (1995), and Wood (1997) all argue for a large impact associated with the spatial
aggregation of soil moisture, while contrary conclusions are presented by Sellers et al.
(1995) and Kustas and Jackson (1999).

In cases where land surface aggregation effects are large, subgrid land surface
heterogeneity can be incorporated in land surface models through a probability density
function (PDF) representation. The PDF approach has been used for soil moisture, or
surrogates for soil moisture such as stomatal conductance, in a number of land surface
schemes (Wetzel and Chang 1988; Avissar 1992; Famiglietti and Wood 1994a; Wetzel
and Boone 1995). However, if the grid-scale corresponds to the footprint-scale at which
soil moisture information is available, estimating subgrid statistics is not a trivial task.
Estimation of subgrid statistics in this case requires a “downscaling” strategy capable of
connecting fine-scale variability to observable magnitudes of coarse-scale heterogeneity
(Bléschl and Sivipalan 1995). One possible downscaling approach is to assume that the
statistical moments of soil moisture fields have a power-law relationship with scale, and
to estimate magnitudes of fine-scale (or subresolution-scale) variability based on fitting
a scaling exponent to observed coarse-scale field statistics and extrapolating to finer

scales (Dubayah et al. 1997).



The value of coarse-scale surface wetness observations for energy balance modeling
depends both on the magnitude of the aggregation and dynamic impacts associated
with smoothing soil moisture and the feasibility of strategies to correct modeling errors
associated with each impact. This paper focuses on the soil moisture aggregation
impact. Using TOPMODEL-based Land-Atmosphere-Transfer Scheme (TOPLATS)
simulations over the SGP region this analysis will quantify the magnitude of the soil
moisture aggregation effect on the coarse-scale prediction of land surface energy fluxes
and assess the ability of the downscaling strategy introduced by Dubayah et al. (1997)
to compensate surface energy flux predictions for the impact of nonresolved soil moisture

heterogeneity.

2. TOPLATS modeling

TOPLATS modeling of the SGP region was used to generated realistically
heterogeneous descriptions of surface soil moisture heterogeneity. For a full description
of TOPLATS see Famiglietti and Wood (1994a) and Peters-Lidard et al. (1997).
Simulations were run on a 1-km modeling grid over the 575,000 km? Red-Arkansas River
basin during the 1994 growing season (1 UTC 1 April 1994 to 24 UTC 31 July 1994).
See Figure 1 for location and scale of the basin. Hourly precipitation products were
obtained from 4-km estimates of hourly rainfall accumulations retrieved by the Next
Generation Weather Radar (NEXRAD) system of Weather Surveillance Radar-1988
Doppler (WSR-88D) radars (Hudlow et al. 1991). Incoming solar radiation imagery

was derived from processing 1-km Geostationary Operational Environmental Satellite



(GOES) imagery of reflected solar radiation through the 2001 Short-Wave Radiative
Transfer Algorithm (Diak and Gautier 1983). Surface meteorology data (e.g. wind
speed, air pressure, surface temperature, and wet bulb surface temperature) data were
taken from the spatial interpolation of measurements made at 72 National Climate
Data Center (NCDC) stations within the south-central United States. Land cover was
taken from a 1-km classification map derived from Advanced Very High Resolution
Radiometer (AVHRR) imagery of the SGP region. Soil and topographic information was
based on 1-km imagery of depth to bedrock estimations, a 1-km State Soil Geographic
(STATSGO) soil texture image, and a 1-km United States Department of Agriculture
(USDA) digital elevation map (DEM) of the basin. Soil hydrology parameters were
taken from Cosby et al. (1984), except for values of saturated hydraulic conductivity
which were based on those listed in Rawls and Brakensiek (1982). The following
land-cover classification categories were used: short grass, agricultural crops, tall grass,
deciduous trees, coniferous tress, deciduous shrubs, coniferous shrubs, water, and bare
soil. Based on values reported in the literature, Tables 1 and 2 assigned water and
energy balance parameters to each of these land cover types. Two soil layers were used:
a 15-cm surface zone and a subsurface zone extending from the bottom of the surface

zone to the top of the water table.

a. TOPLATS calibration and validation

The period of high-resolution modeling was supported by longer periods of

low-resolution modeling for purposes of model calibration and generation of realistic



initial conditions. Low-resolution modeling was based on subdivision of the entire
Red-Arkansas basin into 314 separate subcatchments. Forcing data for low-resolution
modeling was obtained from data sets constructed during the PILPS-2¢ (Project for the
Intercomparison of Land Parameterization Schemes) study of the Red-Arkansas River
basin (Wood et al. 1998).

Calibration of the water balance portion of TOPLATS was based on comparisons of
TOPLATS predictions to naturalized stream-flow data obtained for five subcatchments
in the eastern portion of the basin. The emphasis on the eastern edge of the Red-
Arkansas basin is appropriate given that the model processes affected by calibration
(i.e. baseflow and saturation excess runoff) are significant only in the eastern portion of
the SGP. To obtain realistic initial conditions for high-resolution TOPLATS modeling,
the statistical version of TOPLATS was run at an hourly time step over each of the 314
subcatchments from 1 UTC 1 January 1991 to midnight 24 UTC 1 March 31 1994.

Point-scale TOPLATS predictions of surface energy flux, surface soil moisture, and
surface temperature have been extensively validated within the SGP region (Famiglietti
and Wood 1994b; Peters-Lidard et al. 1997, 2001). For the simulations described
here, TOPLATS energy flux predictions were validated against measurements made
by Bowen ratio (EBBR) flux towers within the SGP ARM-CART site. Figure 2
compares the spatial average of TOPLATS predictions over the entire ARM-CART
site to the average of all nine EBBR flux towers. Unambiguous validation of energy
flux predictions over such a large spatial scale is extremely difficult and several points

should be acknowledged with regard to validation results presented in Figure 2. Nine



flux tower observations over the entire 140,000-km? site represents very sparse spatial
sampling. Furthermore, in 1994, all EBBR flux tower sites were located in fields
containing pasture or rangeland landcover - suggesting that abundant areas of winter
wheat landcover are undersampled in our validation dataset. The overall impact of
these sampling limitations on the description of ARM-CART site-scale energy fluxes
provided by averaging EBBR flux tower observations is unclear. Gao et al. (1998)
compare 1-km PASS (PArameterization of Subscale Surface fluxes) model results for
the entire ARM-CART site to the spatial average of EBBR flux tower measurements
available in July 1995 and find close agreement for sensible heat flux (H) magnitudes
but a positive bias of 50 W m~2 in model predictions of latent heat flux (AE) during
the afternoon. They suggest that poor EBBR sampling of the generally wetter eastern
half of the ARM-CART site contributes to an underestimation of ARM-CART site-scale
latent heat flux (AF) by the EBBR observations. However, for exactly the same time
period in summer 1995, Doran et al. (1998) make similar comparisons between averaged
EBBR observations and distributed SiB2 (Simple Biosphere Model) predictions and find
a positive bias in model predictions of H - implying an overestimation of AE in averaged
EBBR observations - throughout the diurnal cycle. They attribute this mid-summer
bias to the neglect of EBBR observations within fallow winter wheat (i.e. bare soil)

fields.
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b. Aggregation and reinsertion procedure

Figure 3 shows imagery produced by the 1-km TOPLATS simulations and gives a
sense as to the magnitude of land surface heterogeneity predicted by the model. Using
TOPLATS, a benchmark imagery of 1-km surface and subsurface soil was obtained at
every local solar noon (19 UTC) between 1 April 1994 and 31 July 1994. This soil
moisture imagery was linearly aggregated to a some coarser footprint-scale and, at the
appropriate solar noon, reinserted into a second TOPLATS simulation calculated with
identical forcings. Footprint-scales between 2 and 64 km were examined in this way,
but the 1-km computational grid-scale and full 1-km variability in other model forcings
and parameters, was maintained in all simulations. Insertion occurred every local solar
noon and the water and energy balance of TOPLATS was allowed to evolve normally
for the twenty-four period between image insertions. TOPLATS energy flux predictions
for various soil moisture resolutions were compared for time steps immediately following
the insertion of coarse-scale imagery to minimize the impact of small-scale soil moisture
heterogeneity regenerated by the model. The procedure was designed to mimic the daily
insertion of coarse-scale remotely sensed soil moisture observations into a land surface

model operating at a finer grid-scale.

3. Impact of soil moisture aggregation

Spatial averaging and reinsertion of high resolution (1-km) TOPLATS soil
moisture products back into the energy balance portion of TOPLATS provides on

opportunity to simulate the impact of utilizing low-resolution soil moisture observations
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to make regional-scale surface energy flux predictions within a higher resolution model.
Analytical representations of this impact are straightforward. Let 6(z,y) represent
a continuous two-dimensional field of soil moisture. The mean of §(z,y) within a

computational grid-cell of size A is

<l >,= A_Z//H(x,y) dz dy = 6, (1)

where the subscript A represents the footprint-scale over which the underlying field was
averaged. For convenience, the angled bracket notation is dropped in some expressions,
and the presence of a scale sub-script alone is used to indicate linear spatial averaging.
Using this notation, the difference between utilizing a continuous field moisture field
f and a field averaged up to some grid-scale A to calculate a grid-scale flux F' can be
summarized by taking the expectation of a Taylor’s series expansion of F'(f) around the

grid-scale soil moisture ),

1

(r0), = (F0), = =2 5:(0 -0 T

An expansion of Eq. (2) yields

(rom), - (ro), = - 5(0-0) (T
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The soil moisture aggregation effect is composed of two separate processes. The
first term on the right hand side of Eq. (3) describes how sensitivity to the presence
of subgrid-scale soil moisture variability arises from the nonlinearity of F' with respect
to soil moisture in combination with a significant spread of the local subgrid values
f around the grid-scale mean 6,. This term will be referred to as the “nonlinearity”
term. The second term in Eq. (3) describes the impact of losing correlation between the
subgrid field § and derivatives of the F'(6) relationship and will be referred to as the “loss
of correlation” term. This term can be neglected for the case of statistical independence
between subgrid soil moisture and variations in the relationship between soil water
fluxes and soil moisture. However, the point-scale relationship between soil water fluxes
(i.e. drainage, evaporation, and transpiration) and soil moisture varies strongly between
soil texture and vegetation types (Hillel 1980). These soil water fluxes, in turn, impact
expected magnitudes of soil moisture. Therefore correlations inevitably develop between
local soil and vegetation properties, which determine F'(#), and local soil moisture
fluctuations. The loss of correlation term describes the net impact on grid-scale fluxes of
failing to resolve such correlation. Both terms are derived with the implicit assumption
that fine-scale land surface parameters are known and, consequently, neglect impacts
associated with the aggregation of such parameters (see e.g. Boulet et al. 1999).

Model closure for the impact of nonresolved soil moisture heterogeneity on flux
estimates depends on the accurate approximation of both terms using only grid-scale
information. Since higher-order derivatives of the relationship between F' and 6 are

known a priori, the nonlinearity term can be recovered from subgrid-scale statistical
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information. Furthermore, if a given two-parameter distribution shape can be accurately
fit to subgrid soil moisture distributions, all such subgrid statistics are specified by the
subgrid soil moisture variance. In contrast, approximation of the loss of correlation

term requires a more complex representation of subgrid variability describing the spatial

interplay between subgrid model parameters and soil moisture heterogeneity.

4. Soil moisture spatial scaling

Dubayah et al. (1997) and Hu et al. (1998) both note the potential of spatial
scaling to provide the basis for a soil moisture downscaling approach. A given field 6 is
said to scale spatially if its statistical moments, observed at any two spatial resolutions

A and Ay, obey the following power-law relationship

‘ 2\ K@)
<0 >= (A—O) <0l > ()
or equivalently
A
log < 0 >= K(q)log ()\—) +log < 60 > (5)
0

where ¢ is the order of the statistical moment, K the scaling parameter, and the angled
brackets used to describe spatial averaging. The ratio A/, is called the “scale factor.”
If A < Ao, the scale factor is less than one, and Eq. (5) illustrates a downscaling
procedure that connects fine-scale (\) field statistics to coarse-scale (1)) information. If
K (q) varies linearly with ¢, the field is said to exhibit “simple scaling.” Simple scaling

fields therefore exhibit two basic features: log-log linearity in < 6 > versus the scale
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factor and a linear relationship between the scaling exponents K(q) and the statistical

moment ¢. It is possible for the first requirement to hold, but not the second. Fields are
said to exhibit multi-scaling if they demonstrate log-log linearity in < 6 > versus the

scale factor, but concavity in the relationship between K(q) and ¢q. Multi-scaling fields
are not strictly self-similar in the sense that a set of scaling exponents K (q) is required
to translate moments between scales (Gupta and Waymire 1990).

As demonstrated by Dubayah et al. (1997), spatial scaling allows for estimation of
fine-scale (i.e. non-resolved) variability from coarse-scale (i.e. resolved) soil moisture
spatial structure. Figure 4 demonstrates the procedure for the second moment < 63 >
of a typical soil moisture field generated by TOPLATS. Assuming the finest observable
to be 32 km, a scaling exponent K (2) can be fitted in log-log space within the resolved
range of scales. This exponent is then used to extrapolate down to finer scales -
providing an estimate of the sub-32km variability present in the soil moisture field.
Estimates of such fine-scale statistics are required for approximation of the nonlinearity
term in Eq. (3). Simple scaling requires only that a single moment be fitted, since the
scaling exponent at one moment can be linearly related to any other moment. The
procedure is also applicable to multi-scaling fields with the caveat that fitting of a

separate scaling exponent K (q) is required for each moment g.

5. Results

Results presented in this section use TOPLATS modeling results (Section 2) to

quantify the impact of the soil moisture aggregation effect (Section 3) on surface energy
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flux prediction within the SGP region. Based on the downscaling procedure outlined in
Section 4, a strategy for correcting energy flux predictions for the impact of nonresolved

soil moisture heterogeneity is developed.

a. Impacts of soil moisture aggregation

Figure 5a shows a time series of biases in TOPLATS surface energy flux predictions
for the entire ARM-CART site derived from 32-km (versus 1-km) soil moisture
information. Coarse-scale (32-km) results are based on noontime predictions made
immediately after the insertion of spatially averaged imagery back into TOPLATS. Soil
moisture impacts AE by controlling the rate at which water can be extracted from the
soil for either evaporation or transpiration. Following Wetzel and Chang (1987), actual
evapotranspiration is taken to be the minimum of the threshold evapotranspiration rate
AET - calculated as a function of soil moisture # and using the formulation presented in
Feddes and Rijtema (1972) - and the potential evapotranspiration rate AE, - calculated
using the Jarvais (1976) type formulation outlined in Peters-Lidard et al. (1997). Such
“supply and demand” formulations for evapotranspiration are a common component of
land surface models (Desborough 1997) and have been successfully applied to surface
energy flux modeling with the SGP region (Wetzel and Chang 1988; Famiglietti and
Wood 1994; Wetzel and Boone 1995). Typical AEr(f) curves, based on Feddes and
Rijtema (1972) and parameters given in Table 2, are shown in Figure 6. Soil moisture
also directly effects ground heat flux (G) through its control on the thermal properties

of soil (Peters-Lidard et al. 1998). Since the sensitivity of surface albedo on soil wetness
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is neglected, other components of the energy balance are not directly impacted by soil
moisture.

Small (< 10 W m™2) errors in G are seen in Figure 5a throughout the growing
season. Much larger errors in A\E appear during mid-May when soil water storage over
portions of the ARM-CART region is sufficiently depleted to allow for soil moisture
control of evapotranspiration. Errors in A\F reach a maximum during a particularly
dry portion of the growing season in late June and early July (see Figure 2c). The net
soil moisture aggregation impact on A\E is always positive, suggesting that degradation
of soil moisture resolution from 1 to 32 km biases large-scale calculations of AE' high.
Among components of the energy balance, errors in AE are largely compensated for
by a decrease in sensible heating H. A slight rise in R,, is observed but it is an order
of magnitude smaller than the impact on H and AE. This interplay maximizes the
sensitivity of grid-scale Bowen ratio (H/AF) predictions to the presence of subgrid-scale
soil moisture variability.

Latent heat flux errors shown in Figure 5a have two separate sources, corresponding
to the two terms shown in Eq. (3). Figure 5b shows time series of noontime (19
UTC) values for both terms in Eq. (3) averaged over the entire ARM-CART site. The
nonlinearity term is consistently positive. As shown in Figure 6, the transpiration-soil
moisture function has two distinct regions of concavity, one negative at high soil
moistures and one positive at low soil moistures. Following Eq. (3), the consistently
positive bias shown in Figure 5b implies that the region of negative concavity plays

a dominant role in determining the sign of the nonlinearity term. This is due to the
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relative scarcity of 32-km soil moisture values within the region of positive concavity at
or just above the wilting point. Soil water loss for moisture levels near wilting is small
for bare soil surfaces and effectively zero for vegetated pixels. Consequently, spatial
distributions of 1-km soil moisture values tend to become positively skewed for dry
conditions since local soil moisture levels have difficulty progressing far below wilting.
This skew makes it dynamically difficult for 32-km average soil moisture values to fall
into the regime of positive concavity needed to make the nonlinearity term negative. In
contrast, the loss of correlation term varies in sign from negative early in the growing
season to positive during drier periods in June and July but is significant only during
two relatively dry periods of the simulation (mid to late May and late June - see Figure
2c). During these two dry periods, it contributes about a third of the total error
associated with the soil moisture aggregation effect.

Figure 7 plots root-mean-squared (RMS) error in domain-averaged TOPLATS
AFE predictions corresponding to insertion of soil moisture products with horizontal
resolutions of 1, 2, 4, 8, 16, 32, and 64 km. Error values are for noontime (19 UTC)
TOPLATS predictions made between 1 June and 31 July 1994 and calculated relative
to validation estimates derived from averaging measurements from EBBR flux towers
within the ARM-CART study area. Using 1-km soil moisture data, comparisons with
flux tower data reveal a RMS difference between model and validation values of 36.9
W m 2. This difference rises to 67.1 W m2 as the spatial resolution of soil moisture
information used to predict surface energy fluxes flux is degraded from 1 to 64 km.

Consequently, nearly half the error incurred when using 64-km soil moisture data is
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attributable to the neglect of soil moisture spatial variability.

The magnitude of the nonlinearity term shown in Figure 5b is a direct consequence of
nonlinearities in the modeled relationship between soil moisture and evapotranspiration.
The supply and demand type formation that employed here (Figure 6) has a clear
physical basis and is commonly used in land surface models. Nevertheless, it represents
only one of a number of possible formations. More linear relationships between soil
moisture and evapotranspiration would yield smaller magnitudes for the impact of soil
moisture aggregation. Therefore, some model dependency must be acknowledged for

results in Figures 6 and 7.

b. Subgrid soil moisture representations

A portion of the error observed in Figure 7 can be remediated thorough simplified
representations of subgrid soil moisture heterogeneity. Figure 8 demonstrates four
separate cases along the continuum of possible representations for subgrid soil moisture
heterogeneity within the ARM-CART site: explicit representation of the variability, a
distribution for each grid cell, a subgrid variance for each grid cell, and a single subgrid
variance for entire model domain. Figure 9a shows the RMS errors in ARM-CART
site-scale A\E associated with utilizing each representation in TOPLATS. A fifth case -
complete neglect of subgrid-scale variability - is also considered. For the “distributed
variance” and “averaged variance” representations, subgrid soil moisture variability is
assumed to follow a Beta probability distribution. Errors are calculated relative to both

independent ARM-CART validation data and benchmark TOPLATS results derived
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from 1-km soil moisture information.

Relative to benchmark TOPLATS results, degrading soil moisture information from
an “explicit field” to a “distribution” representation introduces a RMS error of 11.7
W m~2 into noontime (19 UTC) TOPLATS predictions of ARM-CART site-averaged
AE. This error is due to the inability of a statistical representation of soil moisture
to represent the loss of correlation term defined in Eq. (3). However, subsequent
degradation of subgrid information from a “distribution” to a “local variance” and
from a “local variance” to an “averaged variance” description are associated with only
minor (< 3 W m™?) increases in error relative to the sharp impact of moving from
an “averaged variance” representation to the complete neglect of subgrid variability
(29.6 W m~2). A similar pattern is seen in Figure 9a when TOPLATS predictions are
compared to independent ARM-CART flux tower observations.

Figure 9b demonstrates the value of each soil moisture representation for \F
calculations at a finer scale (32 km). The reduction in accuracy associated with the
transition from an “averaged variance” representation to complete neglect of subgrid
is less dramatic than for the coarser-scale correction shown in Figure 9a. Nevertheless,
knowledge of an averaged subgrid-scale soil moisture variance allows for correction of
about a third of the error in 32-km AFE predictions associated with the complete neglect
of sub-32-km soil moisture variability.

The large fraction of total error recovered by the “averaged variance” representation
in Figure 9 suggests that even simplistic statistical representations of subgrid soil

moisture heterogeneity have value for effects to predict grid-scale energy fluxes and offers
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support for the statistical representation of subgrid soil moisture variability employed

by many land surface models (Famiglietti and Wood 1994b; Wetzel and Boone 1995).

c. Downscaling based on spatial scaling

Figure 10 examines the scaling structure of a single surface soil moisture field
generated by TOPLATS over the Red-Arkansas River basin. It plots < 69 > versus
scale and least-squares regression lines fit in log-log space to obtain estimates of the
scaling exponents K(q). Figures 11a and 11b plot the scaling exponents and correlation
coefficients associated with such fits TOPLATS-generated surface soil moisture imagery
during the 1994 growing season. Simple scaling requires linearity in the relationship
between K(gq) and ¢ and a single value for 0K (q)/dq at all q. In contrast to this
requirement, Figure 10c demonstrates that 0K (q)/0dq becomes smaller (more negative)
as q increases. This multi-scaling signature in TOPLATS-derived soil moisture fields is
consistent with previously results for both modeled (Dubayah et al. 1997; Peters-Lidard
et al. 2001) and remotely sensed (Dubayah et al. 1997; Hu et al. 1998) soil moisture
fields. Trends observed with respect to overall hydrologic conditions in the basin are
also consistent with those noted in Peters-Lidard et al. (2001). That is, the power law
relationship between scale and statistical moments is a stronger assumption during wet
periods of the simulation and multi-scaling features (i.e. concavity in plots of scaling
exponents versus moment) are more pronounced during relatively dry periods.

The relatively strong power-law behavior (i.e. log/log linearity) demonstrated in

Figures 10 and 11 provides some confidence for applying the downscaling procedure
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shown in Figure 4. The distinction between multi- and simple-scaling is of secondary
interest here since both predict a power-law relationship between statistical moments
and scale which can be exploited using the procedure. Time series of actual versus
predicted magnitudes of ARM-CART site-averaged sub-32-km soil moisture variances
are shown in Figure 12. Predicted variances are derived from the application of the
downscaling approach demonstrated in Figure 4 to 32-km TOPLATS soil moisture
imagery for the entire Red-Arkansas River Basin. Actual variance magnitudes are taken
directly from 1-km TOPLATS simulations of the ARM-CART site. The downscaling
procedure could be replicated for additional statistical moments, providing a more
detailed estimation of subgrid statistics, however; Figure 9 suggests that the benefits of
more detailed statistical representations of subgrid variability are minimal.

For the 15-cm surface soil moisture zone, subgrid variance estimates shown in Figure
12 are generally reasonable except for dry periods in late May and late June, where
the downscaling approach underpredicts subgrid variability. Log-log plots of the second
statistical moment versus scale during this period exhibit an open-upward (positive)
concavity and scaling exponents fit at coarse (> 32 km) scales tend to be larger (less
negative) than scaling exponents fit at finer scales. The result is an underestimation
of fine-scale, subgrid variability when the fitted scaling exponent is extrapolated back
to finer scales. Downscaling variability estimates for the more substantial subsurface
zone appear adequate for April and May but are biased low during later portions of the
summer. Clearly, the downscaling procedures provides only an approximate measure of

subgrid variability. The critical question is whether such estimates are accurate enough
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to parameterize the nonlinearity term in Eq. (3) and correct TOPLATS surface energy

flux predictions.

d. Correction of soil moisture aggregation impact using downscaling

Results in Sections 5.a through 5.c lay the framework for a strategy to correct
grid-scale surface energy flux predictions for the impact of nonresolved soil moisture
heterogeneity. Figure 9 demonstrates that model estimates of AE can be substantially
improved by knowledge of a single quantity - the average subgrid-scale soil moisture
variance within the model domain - and Figure 12 demonstrates the ability of the
downscaling strategy to predict this quantity to within a reasonable accuracy.

Figure 13 plots accuracy gains in coarse-scale predictions of A\E flux realized
using an approach based on parameterization of the nonlinearity term in Eq. (3)
assuming a Beta probability distribution for subgrid-scale moisture heterogeneity and
the daily estimation of a subgrid-scale soil moisture variance through the downscaling
procedure outlined in Figure 4. Since the approach attempts to close surface energy
flux calculations for the impact of nonresolved soil moisture heterogeneity it will be
referred to as the “downscaling closure model.” When compared to ARM-CART flux
tower observations, the model recovers about half of the error (15.7 W m~2 out of 30.3
W m2) associated with the aggregation of soil moisture (i.e. moving from an “explicit”
to “neglect” representation in Figure 13a). For finer-scale (32-km) AE' calculations the
downscaling closure model is less effective and corrects slightly more than a quarter

(16.8 W m~2 out of 58.7 W m~2) of the aggregation error (Figure 13b). Of course,
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impacts associated with the aggregation of soil moisture represent only one source of
error in TOPLATS surface energy predictions derived from 32-km soil moisture data.
When both aggregation and underlying TOPLATS model error are considered, the
closure strategy reduces the total RMS difference between ARM-CART site-averaged
model predictions and EBBR flux tower observations by slightly less than a quarter
(67.1 to 51.5 W m~? in Figure 13a).

Corrected TOPLATS results for other soil moisture resolutions are examined in
Figure 14 along with results associated with the uncorrected insertion of coarse-scale
soil moisture imagery. Also plotted in Figure 14 are error magnitudes associated with
representing subgrid soil moisture variability using a fitted Beta distribution. The figure
allows for decomposition of the error associated with application of the downscaling
closure model into various sources. For the 51.5 W m™2 error associated with the
calculation of ARM-CART site-scale A\E using 32-km soil moisture data and the
downscaling closure model: 36.9 W m~2 is associated with model (TOPLATS) and/or
validation error, 6.5 W m 2 with degrading soil moisture variability within a 32-km
grid-cell from an explicit to a statistical representation (i.e. statistical representation
error), and 8.1 W m™2 is attributable to the imperfect statistical description of soil
moisture provided by the downscaling model (i.e. downscaling model error). The
“downscaling model error” noted in Figure 14 is a direct consequence of inaccuracies in
the downscaling approach seen in Figure 12 while the “statistical representation error”
is introduced by the neglect of the loss of correlation term in the downscaling closure

model.
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The decrease in error for downscaling closure model results seen between 16 and 64
km in Figure 14 is somewhat counterintuitive and is likely due to a spurious cancellation
of biases. Downscaled estimates of variances within 64-km grid-cells are biased high
because of a slight break in the scaling of the TOPLATS-simulated soil moisture fields
between 64 and 128 km. This overestimation of subgrid variability in turn causes
an overestimation of the nonlinearity term in Eq. (3). However, the high bias of
the nonlinearity term cancels a portion of the low bias associated with the neglect of
the loss of correlation term and actually improves closure model results. In addition,
at fine scales (< 4 km) distributions of subgrid 1-km fields become less continuous
and therefore less amenable to fitting using a smooth, unimodal Beta probability
distribution. This difficulty is reflected in the slight increase in error associated with a

fitted Beta distribution representation of subgrid soil moisture at fine grid-scales.

6. Discussion and conclusions

This analysis concerns itself solely with the impact of spatially aggregating soil
moisture on the prediction of large-scale surface energy fluxes. Analogous concerns
about the impact of averaging land surface parameters and the dynamic impacts of
smoothing land surface heterogeneity are not considered. The emphasis on inserting
coarse-scale (> 30-km) observations into an otherwise fine-scale (1-km) model is made
relevant by current trends in large-scale modeling capabilities and the availability of
high-resolution land surface data sets. High resolution vegetation, soil, and topographic

maps are increasingly available at global and continental scales. Reflecting this
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availability, real-time land surface modeling on an 1/8th degree (~15-km) grid for North
American is currently being performed as part of the NLDAS (North American Land
Data Assimilation Scheme) project and on an 1/4 to 1/8th degree grid for all land
north of 60° South within the GLDAS (Global Land Data Assimilation Scheme) project
(http://ldas.gsfc.nasa.gov). Even finer grid-scales should be feasible in the near future.
In contrast, the resolution of next-generation passive radiometers designed to measure
soil moisture from space is unlikely to fall below 10-30 km even if innovative antennae
design strategies are employed (Jackson et al. 1999).

The value of such coarse-scale soil moisture observations for surface energy flux
prediction is contingent upon both the magnitude of the soil moisture aggregation effect
and the ease at which this effect can be corrected using downscaling techniques. For
the particular soil moisture/evapotranspiration formulation employed in TOPLATS (see
Figure 6 and Section 5a), spatial smoothing of soil moisture has a profound impact on
TOPLATS surface energy flux predictions made within the SGP ARM-CART region
during June and July 1994 (Figure 5). However, results in Figure 9 suggest that a
downscaling strategy for soil moisture need not capture all subgrid information in
order to effectively compensate energy flux predictions for this error. In fact, a large
fraction of the error associated with neglecting subgrid-scale soil moisture variability
can be corrected using a single, domain-averaged, measurement of subgrid soil moisture
variance. This result demonstrates the general feasibility of effective correction strategies
by lowering the complexity requirements for descriptions of subgrid-scale soil moisture

heterogeneity down to levels potentially obtainable using downscaling procedures.
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This analysis also expands upon work by Dubayah et al. (1997) and Peters-Lidard
et al. (2001) by assessing the spatial scaling properties of TOPLATS-simulated soil
moisture fields for a larger spatial and temporal domain and demonstrating the degree
to which the downscaling strategy shown in Figure 4 is applicable to the simulated soil
moisture fields. As in this previous work, results suggest that the simulated surface
soil moisture fields consistently exhibit multi-scaling behavior characterized by log-log
linearity in < 6% > versus scale A and concavity in the relationship between K(g) and ¢
(Figure 10).

Despite the general strength of a power-law relationship between second statistical
moments and scale (Figure 11), the downscaling procedure demonstrated in Figure
4 provides a simplified, and at times inaccurate, representation of subfootprint-scale
soil moisture heterogeneity (Figure 12). However, utilizing the imperfect description
it provides, within a probability density function (PDF) representation of subgrid
variability, is clearly superior to the typical strategy of assuming zero subgrid variance
and applying a point-scale model to coarse-scale information (Figure 13). In fact, for
footprint-scales greater than 16 km, the downscaling closure model corrects roughly half
of the model error associated with the aggregation of soil moisture data (Figure 14).
The ability to correct such aggregation-based errors is a key consideration for assessing
the degree to which poor spatial resolution compromises the value of soil moisture
observations from space.

The primary advantage of a downscaling procedure based on spatial scaling lies

in its simplicity and ability to predict fine-scale variability in the absence of ancillary
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data or modified model calibration. Because it requires no additional model parameters,
any benefit to model accuracy need not be balanced against concerns about increased
model complexity. That said, a wide range of more complex downscaling procedures are
possible. One particularly promising strategy is combining high-resolution land surface
data (e.g. land cover or soil texture) and coarse-scale remotely sensed soil moisture
imagery using variational data assimilation to recover subfootprint-scale heterogeneity
in remotely-sensed soil moisture fields (Reichle et al. 2001). This technique allows for
recovery of subfootprint-scale cross-correlation between land surface properties and soil
moisture and, consequently, correction for a portion of the loss of correlation term in
Eq. (3).

The coarse spatial resolution at which current antennae technology allows for
the remote observation of soil moisture from space poses a challenge for efforts
by hydrologists to demonstrate the value of a sensor designed exclusively for the
measurement of surface soil moisture from space. While aggregation effects surrounding
the coarse-scale retrieval and insertion of soil moisture imagery into land surface models
are potentially large, the prospect for remediation of these errors through simplistic
correction strategies appears quite good. The ease at which aggregation errors can
be corrected suggests that the value of remotely sensed soil moisture observations for
large-scale energy flux prediction is not irreparably compromised by poor horizontal

sensor resolution.
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Table Captions

Table 1. Vegetation parameters used in TOPLATS modeling. f;, is the fraction of
root area in the surface zone. Surface albedo («) values were taken from Pielke (1984),
Stull (1995), and Dingman (1994). Surface emissivity (€) values were taken from
Brutsaert (1982). Momentum roughness (2q,,) values were taken from Brutsaert (1982)
and Pielke (1984). Following Betts and Beljaars (1993), roughness lengths for heat
transport (zon) were assigned to be 0.01*zy,,. Based on recommendations made by
Kondo (1971), values of zero place displacement (d) for trees and shrubs were set equal
to 2/3 of assumed vegetation height.

Table 2. Vegetation parameters used in TOPLATS modeling. Leaf area index (LAI)
values were based on values listed in Pielke (1984). Minimum stomatal resistance

(T, min) values were based on values listed in Peters-Lidard et al. (1997). Following
Jacquemin and Noilhan (1990), maximum stomatal conductance (rs; max) was set equal
to 5000 m sec™! for all species. The root spacing parameter (b) is described in Feddes
and Rijtema (1972). Internal plant resistance (R,) values were based on values
calculated by Federer (1979), Choudhury and Federer (1984), and Choudhury and Idso

(1985). Following Wetzel and Chang (1987), the wilting soil water potential at which

vegetation close their stomata was take to be -2.1 MPa for all vegetation types.
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Figure Captions

Figure 1. Location of Red-Arkansas River basin and ARM-CART study site within
the United States Southern Great Plains.

Figure 2. Time series of modeled (TOPLATS) versus observed levels of ARM-CART
site-averaged (a) latent (AE) and (b) sensible (H) heat flux. Plotted values are daily
averages of observations/predictions made over a seven-hour period centered on local
solar noon (19 UTC). Observed values are an average of measurements made at 9
bowen ratio flux towers within the ARM-CART site. (¢) Hourly time series of modeled
(TOPLATS) surface and subsurface volumetric soil moistures over the ARM-CART
site.

Figure 3. Typical imagery of surface zone soil moisture and latent heat flux generated
by 1-km TOPLATS simulations of the Red-Arkansas River basin.

Figure 4. Schematic of downscaling strategy based on spatial scaling. The strategy is
based on fitting a least-squares regression line at (resolvable) scales and extrapolating
down to finer (unresolvable) scales in order to estimate fine-scale soil moisture statistics
(Dubayah et al. 1997).

Figure 5. (a) Net bias of TOPLATS surface energy flux predictions over the
ARM-CART site derived from 32-km (versus 1-km) soil moisture data and (b)
decomposition of bias in latent heat flux into the nonlinearity term and the loss of
correlation term described in Eq. (3).

Figure 6. Relationship between threshold evapotranspiration (AE7) and soil moisture
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for trees and grasses in a sandy loam soil.

Figure 7. Error in ARM-CART site-averaged latent heat flux TOPLATS predictions -
versus the spatial average of flux tower measurements - derived from a range of soil
moisture resolutions. Error values plotted are RMS errors in local solar noon (19 UTC)
TOPLATS predictions made between 1 June and 31 July 1994.

Figure 8. Various representations of subgrid-scale soil moisture heterogeneity for
32-km grid-cells within the ARM-CART site.

Figure 9. Level of RMS error in (a) ARM-CART site-averaged and (b) 32-km
noontime AFE predictions associated with each of the strategies outlined in Figure 8 -
plus the case of neglecting sub-32-km variability. Error is calculated relative to both
TOPLATS predictions made with 1-km soil moisture data and validation data derived
from EEBR flux tower observations within the ARM-CART site.

Figure 10. Log-log plots of statistical moment order ¢ versus scale for a typical surface
soil moisture image generated by TOPLATS. Plotted resolutions vary from 1 km (2°
km) to 128 km (27 km).

Figure 11. For surface soil moisture fields simulated by TOPLATS and linear
least-squares fits in log-log space to the relationship between statistical moment order ¢
and scale: (a) correlation coefficients (r?) for ¢ = 2, (b) the scaling exponent (i.e.
log-log slope) K(q) for ¢ = 2 through 6, and the (c) slope of K(q) versus ¢ evaluated at
a range of q.

Figure 12. Actual versus downscaled estimates of sub-32-km soil moisture variances

for TOPLATS predictions within the ARM-CART site.
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Figure 13. Level of RMS error in (a) ARM-CART site-averaged and (b) 32-km
noontime AE predictions associated with each of the strategies shown in Figure 9, and
the downscaling closure model presented in Figure 4.

Figure 14. Level of RMS error in ARM-CART site-averaged AE predictions associated
with various representations of subgrid soil moisture heterogeneity for a range of
grid-scales. The error associated with the downscaling closure model (open circles) is
composed of: error in the downscaling procedure (Figure 12), error associated with a
statistical representation of subgrid soil moisture variability (Figure 5b), and

underlying model validation errors.
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Table 1: Vegetation parameters used in TOPLATS modeling. f;, is the
fraction of root area in the surface zone. Surface albedo («) values were taken
from Pielke (1984), Stull (1995), and Dingman (1994). Surface emissivity (e)
values were taken from Brutsaert (1982). Momentum roughness (zo,,,) values
were taken from Brutsaert (1982) and Pielke (1984). Following Betts and
Beljaars (1993), roughness lengths for heat transport (zq) were assigned to
be 0.01%zy,,. Based on recommendations made by Kondo (1971), values of
zero place displacement (d) for trees and shrubs were set equal to 2/3 of

assumed vegetation height.

Vegetation Type  fs, Q € Zom d

(m)  (m)
Crop 0.40 0.24 096 0.05 0.0
Short Grass 040 0.24 096 0.02 0.0
Tall Grass 0.20 0.20 0.95 0.06 0.0

Deciduous Trees  0.00 0.20 0.96 0.15 0.6
Coniferous Trees 0.00 0.15 0.96 0.15 0.6
Deciduous Shrub  0.40 0.20 0.96 0.10 04
Coniferous Shrub 0.40 0.15 0.96 0.10 04

Water n/a 0.15 0.98 0.006 04
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Table 2: Vegetation parameters used in TOPLATS modeling. Leaf area index

(LAI) values were based on values listed in Pielke (1984). Minimum stom-

atal resistance (7, i) values were based on values listed in Peters-Lidard

et al. (1997). Following Jacquemin and Noilhan (1990), maximum stomatal

conductance (s max) was set equal to 5000 m sec™' for all species. The

root spacing parameter (b) is described in Feddes and Rijtema (1972). Inter-

nal plant resistance (R,) values were based on values calculated by Federer

(1979), Choudhury and Federer (1984), and Choudhury and Idso (1985). Fol-

lowing Wetzel and Chang (1987), the wilting soil water potential at which

vegetation close their stomata was take to be -2.1 MPa for all vegetation

types.
Vegetation Type LAI LAI Ty min b R,
Max Min (msec™') (m) (sec)
Crop 20 0.5 80.0 0.001 6x8°
Short Grass 20 0.5 40.0 0.001  6x108
Tall Grass 20 0.5 40.0 0.001  6x108
Deciduous Trees 3.0 1.0 120.0 0.0025 1.2x10°
Coniferous Trees 3.0 1.0 120.0 0.0025 1.2x10°
Deciduous Shrub 3.0 1.0 80.0 0.0025 1.2x10°
Coniferous Shrub 3.0 1.0 80.0 0.0025 1.2x10°
Water 0.0 0.0 n/a n/a n/a
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Figure 2: Time series of modeled (TOPLATS) versus observed levels of ARM-
CART site-averaged (a) latent (AF) and (b) sensible (H) heat flux. Plotted
values are daily averages of observations/predictions made over a seven-hour
period centered on local solar noon (19 UTC). Observed values are an average
of measurements made at 9 bowen ratio flux towers within the ARM-CART
site. (c) Hourly time series of modeled (TOPLATS) surface and subsurface
volumetric soil moistures over the ARM-CART site.
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Figure 3: Typical imagery of surface zone soil moisture and latent heat flux
generated by 1-km TOPLATS simulations of the Red-Arkansas River basin.
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Figure 4: Schematic of downscaling strategy based on spatial scaling. The
strategy is based on fitting a least-squares regression line at (resolvable) scales
and extrapolating down to finer (unresolvable) scales in order to estimate
fine-scale soil moisture statistics (Dubayah et al. 1997).
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Figure 5: (a) Net bias of TOPLATS surface energy flux predictions over the
ARM-CART site derived from 32-km (versus 1-km) soil moisture data and
(b) decomposition of bias in latent heat flux into the nonlinearity term and
the loss of correlation term described in Eq. (3).
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Figure 6: Relationship between threshold evapotranspiration (AEr) and soil
moisture for trees and grasses in a sandy loam soil.
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Figure 7: Error in ARM-CART site-averaged latent heat flux TOPLATS
predictions - versus the spatial average of flux tower measurements - derived
from a range of soil moisture resolutions. Error values plotted are RMS errors
in local solar noon (19 UTC) TOPLATS predictions made between 1 June
and 31 July 1994.
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Figure 8: Various representations of subgrid-scale soil moisture heterogeneity
for 32-km grid-cells within the ARM-CART site.
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Figure 9: Level of RMS error in (a) ARM-CART site-averaged and (b) 32-km
noontime AFE predictions associated with each of the strategies outlined in
Figure 8 - plus the case of neglecting sub-32-km variability. Error is calcu-
lated relative to both TOPLATS predictions made with 1-km soil moisture

data and validation data derived from EEBR flux tower observations within
the ARM-CART site.



93

M S Y
el o1 |838f —_
i 16.36 - —
0000009634 _
3P 96.34 2
- 16.32— -
25+ — 6.3 _|
~~ - - B 7]
K= IO T I Y ] L ol O R I B
D 0 1 2 3 4 5 6 7 0 1 2 3 45 6 7
LL .
w @ T T T T T T H
T 97F =3 ]
w - —
C 9.65 q 13
O g6l .
2955_ |
c V[ 1128
fd
RS el I O I L 1|
o 01234567 01234567
o 17
o [T T T T T T Tyga® T T T T T T 7
™ q:5 . ) | i
16.6 — — 20+ —
- 119.6 - -
16.2 e .
i 1194 —
el L 1 1 1 INg k ||
0 1 2 3 456 7 0

[ 1 1 |

1 2 3 4 5 6 7
Log,(Resolution of Soil Moisture Field [km])

Figure 10: Log-log plots of statistical moment order g versus scale for a typ-

ical surface soil moisture image generated by TOPLATS. Plotted resolutions
vary from 1 km (2° km) to 128 km (27 km).
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Figure 11: For surface soil moisture fields simulated by TOPLATS and lin-
ear least-squares fits in log-log space to the relationship between statistical
moment order g and scale: (a) correlation coefficients (r?) for ¢ = 2, (b) the
scaling exponent (i.e. log-log slope) K(q) for ¢ = 2 through 6, and the (c)
slope of K (q) versus ¢ evaluated at a range of q.
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Figure 12: Actual versus downscaled estimates of sub-32-km soil moisture
variances for TOPLATS predictions within the ARM-CART site.
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Figure 13: Level of RMS error in (a) ARM-CART site-averaged and (b) 32-
km noontime AFE predictions associated with each of the strategies shown in
Figure 9, and the downscaling closure model presented in Figure 4.
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Figure 14: Level of RMS error in ARM-CART site-averaged AE predictions
associated with various representations of subgrid soil moisture heterogeneity
for a range of grid-scales. The error associated with the downscaling closure
model (open circles) is composed of: error in the downscaling procedure
(Figure 12), error associated with a statistical representation of subgrid soil
moisture variability (Figure 5b), and underlying model validation errors.



