BIBLIOGRAPHY OF PUBLICATIONS OF 137CESIUM STUDIES RELATED TO EROSION AND SEDIMENT DEPOSITION

Jerry C. Ritchie
Unites States Department of Agriculture
Agriculture Research Service
Hydrology and Remote Sensing Laboratory
BARC-West, Bldg. 007
Beltsville, MD 20705 USA

Carole A. Ritchie
Botanical Consultant
12224 Shadetree Lane
Laurel, MD 20708 USA

USDA-ARS
Hydrology and Remote Sensing Laboratory
Occasional Paper
HRSL-2005-01
June 20, 2005
1. INTRODUCTION

Soil erosion and its subsequent redeposition across the landscape is a major concern around the world. A quarter century of research has shown that measurements of the spatial patterns of radioactive fallout 137Cesium can be used to measure soil erosion and sediment deposition on the landscape. The 137Cs technique is the only technique that can be used to make actual measurements of soil loss and redeposition quickly and efficiently. By understanding the background for using the 137Cs technique to study erosion and sediment deposition on the landscape, scientists can obtain unique information about the landscape that can help them plan techniques to conserve the quality of the landscape. Research should continue on the development of the technique so that it can be used more extensively to understand the changing landscape.

On 16 July 1945 at 1230 Greenwich Civil Time, nuclear weapon tests were begun that have released 137Cs and other radioactive nuclides into the environment. Over the 50 years since this first test, much research has been done to understand the movement and fate of 137Cs in the environment. Many of these studies are critical for understanding the application of 137Cs to the study of soil erosion and the subsequent redeposition of the eroded particles on the landscape. This bibliography presents significant background information.
publications that are useful to studies of erosion and sediment deposition using 137Cs. The bibliography also includes citations of reported studies of the use of 137Cs to measure either erosion or sediment deposition. While the bibliography is extensive, there are certainly publications that we have missed. There has been a rapid increase in publication related to the use of 137Cs related to the erosion and sedimentation (Fig. 1). However, we feel that this bibliography does demonstrate the widespread use and acceptance of 137Cs for measuring erosion and sediment deposition. We hope it will also be useful to those using or preparing to use 137Cs and will help promote the use of 137Cs in erosion and sediment deposition research and measurements.

2. BIBLIOGRAPHY

Ageets, V.Yu. 1996. Accumulation of the radionuclides caesium-137 and strontium-90 in farm crops depending on soil properties. *Pochvovedenie i agrokhimiya* 29:249-257 (Russian)

Aliyev, D.A., M.A. Abdullayev, and A.T. Tagiyev. 1977. Distribution of Sr90 and Cs137 in plowed soils of the dry (subtropical) steppe zone of the lesser Caucasus in the Azerbaijan SSR. *Pochvovedeniye* 7:34-35.

Bachhuber, H., K. Bunzl, and W. Schimmack. 1986. Spatial variability of distribution coefficients of 137Cs, 65Zn, 85Sr, 57Co, 109Cd, 141Ce, 103Ru, 95mTc, and 131I in cultivated soil. *Nuclear Technology* 72:359-371.

Beasley, T.M., and C.D. Jennings. 1984. Inventories of 239,240Pu, 241Am, 137Cs, and 60Co in Columbia River sediments from Hanford to the Columbia River Estuary. *Environmental Science and Technology* 18:207-212.

Brunskill, G.J., D. Povoledo, B.W. Graham, and M.P. Stainton. 1971. Annual supply of ^{238}U, ^{234}U, ^{230}Th, ^{228}Ra, ^{210}Pb, ^{210}Po and ^{232}Th to lake 239 (Experimental Lakes Area, northwestern Ontario) from terrestrial and atmospheric sources. *Canadian Journal of Fisheries and Aquatic Science* 44:215-230.

Bunzl, K., and W. Kracke. 1988. Cumulative deposition of 137Cs, 238Pu, $^{239+240}$Pu and 241Am from global fallout in soils from forest, grassland and arable land in Bavaria (FRG). *Journal of Environmental Radioactivity* 8:1-14.

Campbell, B.L. 1982. Application of environmental caesium-137 for the determination of sedimentation rates in reservoirs and lakes and related catchment studies in developing countries. AAEC Research Establishment, Lucas Heights Research Lab., PMB Sutherland 3322, N.S.W., Australia.

Charmasson, S., P. Bouisset, O. Radekovitch, A. Pruchon, and M. Arnaud. 1998. Long-core profiles of 137Cs, 134Cs, 60Co and 210Pb in sediment near the Rhone river (Northwestern Mediterranean Sea). *Estuaries* 21(3):367-378.

Chebotina, M.Y., and V.F. Bochenin. 1981. 90Sr and 137Cs in bottom sediments of a fresh water lake. *Gidrobiology ZH* 17:82-82. (Russian)

De Preter, P.M., L. Van Loom, A. Maes, and A. Cremers. 1991. Solid/liquid distribution of
radiocaesium in boon clay: a quantitative interpretation. Radiochemica Acta 52/53:299-
302.

De Roo, A.P.J. 1991. The use of 137Cs as a tracer in an erosion study in South Limburg (The
Netherlands) and the influence of Chernobyl fallout. Hydrological Processes 5:215-227.

De Roo, A.P.J. et al. 1989. Soil erosion modelling using “ANSWERS” and Geographic

De Roo, A.P.J., and D.E. Walling. 1994. Validating the ANSWERS soil erosion model using
137Cs, pp 246-263. In: R.J. Rickson (ed.) Conserving Soil Resources: European
Perspective, Wallingford, UK.

Derose, R.C., N.A. Trustrum, and P.M. Blaschke. 1993. Post-deforestation soil loss from
steepleland hillslopes in Taronki, New Zealand. Earth Surface Processes and Landforms
18:131-144.

Desai, M.V.M., N.N. Dey, V.V. Kulkarni, and K.C. Pillai. 1989. Distribution of 137Cs in various
size fractions of bottom sediments of Bombay Harbour Bay. Indian Journal of Marine
Sciences 18:198-200.

Cs-137, Pu isotopes and Am-241 in ligurian and Tyrrenian Seas sediments. Journal of

Desideri, D., M.A. Meli, C. Roselli, and C. Testa. 2002. Geochemical partitioning of actinides,
Cs-137 and K-40 in a Tyrrenian sea sediment sample: Comparison to stable elements.

Desloges, J.R. 1987. Paleohydrology of the Bella Coola river basin: an assessment of

environment of the eastern Coastal mountains of British Columbia, Canada.
Geomorphology 25:75-91.

activity in the Mount Robson area, British Columbia. Canadian Journal of Earth
Sciences 32:65-78.

deglaciation in southwestern British Columbia. Canadian Journal of Earth Sciences
28:800-815.

Foster, I.D.L. (ed.) *Tracers in Geomorphology*, John Wiley and Sons, Chichester, UK.

Froehlich, W., and D. Walling. 1997. The role of unmetalled roads as a sediment source in the fluvial systems of the Polish Flysch Carpathians. International Association of Hydrological Sciences Publication No. 245:159-168.

Fujiyoski, R. And S. Sawamura. 2004. Mesoscale variability of vertical profiles of environmental radionuclides (\(^{40}\)K, \(^{226}\)Ra, \(^{210}\)Pb, and \(^{137}\)Cs) in temperate forest soils in Germany. *Science of Total Environment* 320(2-3):177-188.

Golovatyj, S.E., and S.M. Rydaya. 2002. Forms of radionuclides 90Sr, 137Cs and physicochemical properties of the soils at the 30 km restricted zone around Chernobyl NPP. *Pochvovedenie i Agrokhimiya* 32:228-238, 316, 326. (In Russian).

Gulin, S.B., G.G. Polikarpov, V.N. Egorov, V.N. Zherko, and N.A. Stokozov. 1995. Reconstruction of chronology of the 137Cs and chloroorganic pollutant input to the
western Black Sea deep sediments (from 1940s to 1990s) Dopovivi Natsional'noyo Akademiyi Nauk Ukrayiny 1:93-96. (Russian)

Håkanson, L. 2005. A new general mechanistic river model for radionuclides from single pulse fallouts which can be run by readily accessible driving variables. *Journal of Environmental Radioactivity* 80(3):357-382.

Håkanson, L., T.G. Sazykina, and I.I. Kryshev. 2002. A general approach to transform a lake model for one radionuclide (radiocesium) to another (radiostrontium) and critical model tests using data for four Ural lakes contaminated by the fallout from the Kyshtym accident in 1957. *Journal of Environmental Radioactivity* 60(3):319-350.

Hancock, G.J. and J.R. Hunter. 1999. Use of excess 210Pb and 228Th to estimate rates of sediment accumulation and bioturbation in Port-Phillip-Bay, Australia. *Marine and Freshwater Research* 50:533-545.

Conference, International Center for Arid and Semiarid Lands Studies, Texas Tech University, Lubbock, Texas, USA Publication 02-2.

Hongve, D., I.A. Blakar, and J.E. Brittain. 1995. Radiocesium in the sediments of Øvre
Heimdalsvatn, a Norwegian subalpine lake. *Journal of Environmental Radioactivity*

sediment trace element geochemistry of Lake Coeur D'Alene, USA Part I: Surface

activities on sediment trace element geochemistry of Lake Coeur D'Alene, USA Part II:

Horril, A.D., and G. Clint. 1994. Caesium cycling in heather moorlands ecosystems, pp. 395-

Horril, A.D., and M. Howard. 1991. Chernobyl fallout in three areas of upland pasture in west

inventory in west Cumbria, UK. *Journal of Environmental Radioactivity* 12:143-165.

concentrations in surface air and deposition samples. *Science of the Total Environment*

Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical

Howard, B.J., N.A. Beresford, and F.R. Livens. 1990. An overview of caesium in the semi-
natural ecosystem of an upland sheep farm, In: G. Desmet, P. Nossimbeni, and M. Belli
(eds.), *Transfer of radionuclides in natural and seminatural ecosystems*, Elsevier,
Amsterdam.

pastures on the Irish sea coast in England and Wales and their transfer to food products.
Environmental Pollution 93(1):63-74.

contamination of soil and vegetation within the Semipalatinsk test site. *Radiation and

Li, Y., J. Yang, Y. Zhiui, Chen Jingjian, and Wu Shuxia. 1997. Using 137Cs and 210Pb to assess the sediment sources in a dam reservoir catchment on the loess plateau, China, CNIC-01155; CSANS-0113, China Nuclear Information Centre, Beijing. 15p

Mackenzie, A.B., M.S. Baxter, I.G. McKinley, D.S. Swan, and W. Jack. 1979. The determination of 134Cs, 137Cs, 210Pb, 226Ra, and 228Ra concentrations in nearshore marine sediments and seawater. *Journal of Radioanalytical Chemistry* 48:29-47.

Mitchell, P.I., W.R. Schell, A. McGarry, T.P. Ryan, J.A. Sanchez-Cabaza, and A. Vidal-Quadreras. 1992. Studies of the vertical distribution of 134Cs, 137Cs, 238Pu, 240Pu, 241Pu, 241Am, and 210Pb in ombrogenous mires at midlatitudes. *Journal of Radiation and Nuclear Articles* 156:361-387.

Mundschenk, H. 1983. Zur sorption cäsium von schwebstoff an sediment des Rheins am beispiel der nuklide 133Cs, 134Cs und 137Cs. *Deutsche Gewasserkundliche Mitteilungen* 27:62-68. (German)

Owens, P.N. and D.E. Walling. 2003. Temporal changes in the metal and phosphorus content of suspended sediment transported by Yorkshire rivers, U.K. over the last 100 years, as recorded by overbank floodplain deposits. **Hydrobiologia** 454:185-191.

Polikarpov, G.G., G.E. Lazorenko, A.A. Korotkov, A. Mirzoeva, and A.O. Yu. 1995. Role of suspended matter and bottom sediments of the aquatic ecosystem of the Northern-Crimean Canal in migration of 90Sr, 137Cs, 238Pu, $^{239+240}$Pu. Dopovidi Natsional'nnoyi Akademiyyi Nauk Ukrayiny 7:148-152. (Russian)

Purtymum, W.D. 1974. Storm runoff and transport of radionuclides in DP Canyon, Los Alamos County, New Mexico. Los Alamos Scientific Laboratory, LA-5744, 9pp

Ravera, O., and G. Premazzi. 1971b. A method to study the history of any persistent pollution in a lake by the concentration of 137Cs from fall-out, pp. 703-719. *In: Radioecology applied to the protection of man and his environment.* EUR 4800.

Schuller, P., and A. Ellies. 1994. Einfluß des Jahresniederschlags und der bodenart auf die 137Cs tiefenverteilung in böden Süchiles (The influence of mean annual rainfall and soil texture on the 137Cs vertical distribution in soils from southern Chile). *Zeitschrift fuer Pflanzenernahrung und Bodenkunde* 157:429-432. (German)

Serne, R.J., J.M. Zachara, and D.S. Burke. 1998. Chemical information on tank supernatants, Cs adsorption from tank liquids onto Hanford sediments, and field observations of Cs migration from past tank leaks. Pacific Northwest Lab., Richland, WA (United States), Report No.: PNNL-11495, Jan 98 96p

Suzuki. E. 1993. ^{207}Bi and ^{137}Cs in nearshore marine sediments. I. Distribution of ^{207}Bi and ^{137}Cs in coastal marine sediments collected from the Japan Sea. *Radioisotopes* 42:511-516.

Journal of Paleolimnology 17:239-249.

Environmental Science and Technology 31:2339-2344.

Environmental Science and Technology 32(21):3312-3317.

Walling, D.E. and Q. He. 2001. Model for converting 137Cs measurements to estimates of soil redistribution on cultivated and uncultivated soils, and estimating bomb-derived 137Cs reference inventory (Including Software for Model Implementation). A contribution to the International Atomic Energy Agency Coordinated Research Programmes on Soil Erosion (D1.50.05) and Sedimentation (F3.10.01), Department of Geography, Exeter, UK.

Walling, D., and Q. He. 1997. Models for converting 137Cs measurements to estimates of soil redistribution rates on cultivated and uncultivated soils (Including software for model implementation). A *contribution to the International Atomic Energy Agency Coordinated Research Programmes on Soil Erosion (D1.50.05) and Sedimentation (F3.10.01)*, Department of Geography, Exeter, UK

279

Wan, G.J., P.H. Santschi, M. Strum, K. Farrenkothen, A. Lucek, E. Werth, and C. Schuller. 1987. Natural (210Pb, 7Be) and fallout (137Cs, 239,240Pu, 90Sr) radionuclides as geochemical tracers of sedimentation in Greifensee, Switzerland. *Chemical Geology* 63:181-196.

285
Waugh, W.J., J. Carroll, J.D. Abraham, and D.S. Landeen. 1998. Applications of
dendrochronology and sediment geochronology to establish reference episodes for
evaluations of environmental radioactivity. *Journal of Environmental Radioactivity* 4
(3):269-286.

Weigers, J. 1996. Prediction of solid/liquid distribution coefficients of radiocaesium in soils and
sediments. Part II. A new procedure for solid phase speciation of radiocaesium. *Applied
Geochemistry* 11:595-600.

Abstract

and environmental preservation, International Atomic Energy Agency, Vienna, Austria.

