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Abstract Resumen

When flowering, leafy spurge Euphorbia esula L.) has conspic- Cuando esta en floracion, el “Leafy spurge” Euphorbia esula
uous yellow-green bracts that are spectrally distinct from other L.) tiene bracteas amarillo-verdes sobresalientes que son espec-
vegetation and may be distinguished with hyperspectral remote tralmente distintas a la otra vegetacion y pueden ser distin-
sensing. In July 1999, Airborne Visible Infrared Imaging guidas con sensores remotos hiperespectrales. En Julio de 1999
Spectrometer (AVIRIS) data were acquired in northeastern se adquirieron datos de espectrometria de imagenes infrarrojas
Wyoming, near Devils Tower National Monument. Using the aéreas visibles (AVIRIS) del nordeste de Wyoming, cerca del
reflectance spectrum of flowering leafy spurge, leafy spurge Monumento Nacional Devils Tower. Usando el espectro de
occurrence was determined using a new method of spectral mix- reflectancia de la floracién del “Leafy spurge” se determiné su
ture analysis, Mixture Tuned Matched Filtering (MTMF).  ocurrencia mediante un nuevo método de andlisis de mezcla
Ground reference data (146 sites) were obtained 2 weeks beforeespectral, Filtrado de mezcla aparejada sintonizada (MTMF).
and after AVIRIS overflight to test the classification accuracy of Dos semanas antes y dos después de vuelo del AVIRIS se obtu
leafy spurge. For 3 land cover types: mixed prairie, riparian, and vieron datos en tierra (en 146 sitios) para probar la certeza de la
coniferous woodlands, the presence or absence leafy spurge waclasificacion del “Leafy spurge”. Para 3 tipos de cobertura,
detected with an overall accuracy of 95% using a 0.10 threshold pradera mixta, riberefia y bosques de coniferas, la presencia o
for detection. Differences in classification thresholds resulted in a ausencia de “Leafy spurge”se detecté con una certeza general
trade-off between false positives, pixels that were mapped asdel 95%, usando un umbral de deteccién de 0.10. Diferencias en
leafy spurge but did not contain leafy spurge on the ground, and los umbrales de clasificacion resultaron en un sacrificio entre
false negatives, areas that had leafy spurge on the ground butfalsos positivos, pixeles que fueron mapeados como “Leafy
were not mapped as leafy spurge. Detection of leafy spurgespurge” pero no contenian la especie en tierra y falsos nega-
occurrence was best for mixed prairie and riparian cover types, tivos, areas que tenian “Leafy spurge” en tierra pero no fueron
and somewhat less successful for conifer woodlands because cmapeados como “Leafy spurge”. La deteccién de la ocurrencia
interference from tree crowns and their shadows. The advantage de “Leafy spurge” fue mejor para los tipos de cobertura de
of the MTMF technique is it allows automated processing of pradera mixta y riberefia y algo menos exitosa para los bosques
hyperspectral imagery to generate accurate maps of leafy spurge de coniferas, debido a la interfase entre las copas de los arboles
occurrence. y sus sombras. La ventaja de la técnica MTMF es que permite
el procesamiento automatico de imagenes hiperespectrales para
generar mapas certeros de la ocurrencia de “Leafy spurge”.

Key Words: Euphorbia esula L., remote sensing, spectral mix-
ture analysis, classification accuracy, AVIRIS

cost-effective, large-scale, and long-term mapping and monit
Leafy spurge Euphorbia esula L., sensu lato) is a noxiousing of plant populations (Johnson 1999, Anderson et al. 200
perennial weed that infests approximately 1.2 million hectares@found survey work over large areas is prohibitively expensi
land in North America (Lajeuness et al. 1999) and causes searé time-consuming (Everitt et al. 1995). Remote sensing imay
economic impact (Leitch et al. 1996). Anderson et al. (2003) cafepicting the presence or absence of leafy spurge can assist
clude that biologically-based control of leafy spurge is now pratranagers in identifying and prioritizing areas for the differel
tical. One of the remaining research needs in leafy spurge m@wls of integrated pest management (Anderson et al. 2003).
agement, and in weed management as a whole, is the adequa®smote sensing is a set of techniques that can contribute sig
icantly to rangeland management (Tueller 1989, 1995), and w
o i thor email: erthunt@hydrolab arsusda.gov management on rangelands (Everitt et al. 2001, Hunt et al. 20!
Trl:g éﬁ?r:ger:ﬁﬂ:nf%iumar;e E. Wickland (N)ASA) for support?ng the AVIRIieafy Spurge 1s a g.OOd candidate for deteCtlor.] by remote sens
data acquisition, and Dr. Gerald L. Anderson (USDA ARS) of TEAM LeafP€Cause the conspicuous yellow-green flowering bracts are sy
Spurge and the Wyoming Space Grant Consortium for funding. Also, the authti@lly unique when compared to other, co-occurring vegetati
thank Dr. David J. Kazmer (USDA ARS) and Dr. Ronald W. Marrs and D(Everitt et al. 1995, Anderson et al. 1999, Parker Williams ai

Stephen T. Jackson (University of Wyoming) for discussions. Hunt 2002). High-spectral-resolution imagery, also called ima
Manuscript accepted 28 Mar. 03.
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ing spectroscopy or hyperspectral remotground is compared to the class of thgtroblems caused by generating “homoge
sensing, may be the most appropriate datmit from the remotely sensed image; comeous” polygons on a landscape. It ha
for mapping individual plant species withrectly classified units would be shown orbeen shown that pixel positional error
a accuracy and precision (Clark et althe major diagonal of the matrix. For eachesults in conservative bias of the accurac
1995). With hyperspectral data, a relativeerror matrix, overall accuracy, producer'sassessment (Verbyla and Hammont
ly new technique of spectral mixtureaccuracy, user's accuracy, errors of cont995); therefore, the unavoidable position
analysis, Mixture Tuned Matched Filteringmission, and errors of omission can be cakl error introduced into this assessmer
(MTMF), can be used to detect the occureulated. Overall accuracy is simply thewvould result in lower, or conservative,
rence of spectrally-unique materialdotal number of units correctly classifiedestimates of mapping accuracy.
(Boardman 1998, RSI 1999). divided by the total number of sample

Parker Williams and Hunt (2002) usedunits examined in the error matrix. Spectral Mixture Analysis
the MTMF technique with Airborne An error of commission occurs when a Tne reflectance spectrum for each pixe
Visible Infrared Imaging Spectrometerunit is included into a category in which itiy 5 remotely sensed image is characteri
(AVIRIS) imagery to estimate amounts ofdoes not belong (false positive). An errofic of the mixture of component materials
leafy spurge cover; however the analysesf omission occurs when a unit is N0l the ground. To analyze the mixture:
suggested there will be problems detectingicluded in a category in which it doesyng arrive at sub-pixel estimates of abur
leafy spurge at low cover. Because theelong (false negative). Every error in thgyances, techniques of spectral mixtur
MTMF technique uses an arbitrary threshelassification is an omission from the COranalysis are employed (Adams et al. 1995
old value of abundance, areas with someect category and a commission to a Wrongmith et al. 1990). In general, these tect
leafy spurge may be erroneously classifiedategory. The producer’s accuracy is @jques model each pixel spectrum as a lir
as “leafy spurge not present” (false negameasure of the probability of a sample unit 5y combination of a finite number of
tive error or error of omission). On thebeing correctly classified into a particularspectra||y distinct signatures or “endmem:
other hand, areas without leafy spurgeategory, and is 1 minus the omissiofers » This is analogous to estimating soi
may be erroneously classified as “leafyerror. The user’s accuracy is the probabiligeyiyre, where the texture of a particula
spurge present” (false positive error oty that a sample unit classified on the magj| sample is a linear combination of 3
error of commission). If maps of leafyactually represents that category on thgngmembers: sand, silt and clay. For mo:
spurge distribution from remotely-sensedqround, and is 1 minus the commissioRpectral mixture analysis methods, the
images are to be useful for managemengyror. It is standard practice in remotgefiectance spectrum for each endmemb
the classification accuracy must be detesensing to calculate the producer’s ang 5 required input. The outputs from spec
mined with independent ground referenceser’s accuracies from an error matriX g mixture analysis are images of end
data. The objective of this study is to(Jensen 1996). In other disciplines, stannember abundance, from 0 to 100%
apply the standard methods of accuracgard practices prefer the use of commisgnich is related to the cover fraction of
assessment in remote sensing (Stehmaion and omission error rates. that pixel (Roberts et al. 1998, McGwire e
and Czaplewski 1998, Congalton and Two primary decisions must be made iry| 2000). In general, these techniques a
Green 1999) to a classification of leafydesigning an experiment to assess accurgsentially powerful for rangeland man-
spurge occurrence (Parker Williams andy of a landcover classification (Stehmanygement, because the percent cover
Hunt 2002) with an independent groundand Czaplewski 1998, Congalton andiegetation, bare soil and litter can be
data set. Because the rangeland landscaBeeen 1999), selection of the units foyerived for a given pixel from remotely
is comprised of a mosaic of land covesampling, and determination of the uniensed imagery.
types, we assessed the accuracy of leafyeas in the image and on the ground for\jixtyre Tuned Matched Filtering
spurge detection in 3 different plant comcomparison. Sample unit selection musfTMmF) is a special type of spectral mix-
munities: mixed grass prairie, riparianinsure that representative categories on thge analysis based on signal processin
zones, and coniferous woodlands. landscape are used and that the sampighodologies (Harsanyi and Chang 199

units are widely distributed to avoidggardman et al. 1995, Boardman 1998
geospatial correlation. Generally, 50 samgg 1999). It performs a partial unmixing

Background ple units per class are sufficient for acCupy finding only the pixels where 1 user-
racy assessment (Jensen 1996, CongaltgBfined endmember spectrum is statistica
Accuracy Assessment and Green 1999). ly distinct from the average backgrounc

variables into discrete categories of usefgi¢!ection of the image and ground aregiges the abundance fraction of the chose
information. Landcover classification used©_comparison (Congalton and Greersngmember, from 0 to 100%. Usually sim:
remotely-sensed reflectances or radiancasY): Because a pixel in an image has fe matched filtering results in a large
to determine the category to which a give rbitrary location on the ground, anthymper of false-positive errors. Mixture
pixel belongs. However, errors of landcoyP€CaUse positional errors of maps angining constrains the results of the
er classification occur, because of soifl/0Pal positioning system receiversmatched filtering with an infeasibility
background differences, positional errors2€c0me significant with small pixel sizesscore, to indicate the probability that the
landcover mixtures (mixed pixels), ora'€as based on geographic informatiogm total of all abundance fractions equal
human errors. system polygons are used frequently (goardman 1998, RSI 1999). The exac
The most effective way to represenSCongalton and Green 1999). Howevennathematical formulation of MTMF is not
classification accuracy is via an erroP€Nsen (1996) and Janssen and van defyuired for its use with hyperspectra
matrix (Jensen 1996, Stehman and/el (1994) suggest using individual pixel§magery.
Czaplewski 1998, Congalton and Greefp aPPropriate if a per-pixel classification The major practical advantage of MTMF
1999). The class of a given unit on thdS @ssessed for accuracy, which avoidgyer other techniques of spectral mixture

Classification is the process of assignin;% There is no single preferred method fogpectrum. Simple matched filtering pro-
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analysis is it does not require that all imag@ aircraft at an altitude of 20 km, resultingwithin a time frame of 2 weeks before anc
endmembers be identified (Boardmann a pixel size of 20 m by 20 m. Two2 weeks after the AVIRIS data acquisition.
1998, RSI 1999). Therefore, theAVIRIS scenes, each approximately 11 knWithin this time frame, 246 of the selectec
reflectance spectra for the different soiby 9 km, covered much of the study area. locations were visited on the ground; how:
types (surface moisture, specific minerals The AVIRIS scenes were radiometrical-ever, only 146 of these sites fell within the
and overall textures affect the reflectancéy corrected by the Jet Propulsion2 AVIRIS scenes.

spectrum), roofing materials, road surLaboratory (Green et al. 1998). The data The sample unit of an image pixel (20 rr
faces, water bodies, and other natural angere corrected from radiance to apparerty 20 m) was used in combination with &
man-made features do not have to be idesurface reflectance using the Atmospherslightly larger area for the ground refer-
tified either from pure pixels in an imageRemoval Program version 3.1 (Gao et aknce site (50 m by 50 m). The center o
or from the ground using a field spectrora1993, 1999). Because the wavelengthsach ground reference site was located ¢
diometer. Thus, MTMF may be the ideaffrom 400 to 1000 nm contained the sped¢he AVIRIS image using an U.S.
technique for detecting the abundance of mal information for distinguishing leafy Geological Survey orthophoto quad and

single endmember, leafy spurge. spurge from other vegetation, we usedelective availability encoded Rockwell
bands 6 through 68 for all analyses. Precision Federal Global Positioning

The atmospherically corrected data wer8ystem unit (Rockwell International

Materials and Methods entered into the Minimum Noise FractionCorporation, Cedar Rapids, lowa). The
routine from the Environment for estimated error associated with locating

Study Area Visualizing Images (ENVI), version 3.2,the ground reference site on the AVIRIS

The study area for this research is i istributed by Researc_h Systems, Indmage was approximately 1 pixel, which is
Crook County in northeastern Wyoming. RS, Boulder, Colo.). T.hIS routine essensimilar to what other researchers hav
It consists of an approximately 65 km tially perfor_ms 2 principal componentsreported (Hall et al. 1998, Marsh et al.
area including Devils Tower Nationa|t_ransformat|ons to reduce the computat994). The_Iarger area on _the_groun(
Monument (about 44° 35' N 104° 45' W)_Uonal load (RSI 199'9). The trgnsformeg{ZSOO nt) .alded the (_:I.aSS|f|cat|on by
The remainder of the study area is co data were entered into the Plxgl Purityncorporating .the positional error from
posed of private lands that are used exte 1dex routine to determine the pixels thaimage registration.

sively for livestock grazing (cattle andare spectrally extreme; spectrally extreme

sheep) with some areas of dryland farmingXe!s are often the spectral endmembeground Reference Data Collection
and hay production. Elevations in thdR>! 1999). We identified the most pure ‘At each ground reference site, the pri
study area range from 1219 m along thBIX€ls for leafy spurge in the images anghary Jand cover type (prairie, riparian, or
Belle Fourche River to 1584 m at Missourl'S€d the pixel-average reflectance spegypifer woodland) was determined.
Buttes along the northern border of thé'UM for the leafy spurge endmember. — transects were established from the cent
study area. The average annual precipitia:-.we,used the Mixture Tuned Matchedyg the edge of each ground reference si
tion is 440 mm. iltering (MTMF) routine from ENVI i, 4 girections. The first transect was ran
The vegetation of the study area is pritRS! 1999). Based on 2 criteria, each pix&om|y determined and then each addition
marily a mosaic of 3 land cover types. Thd" thé MTMF result image was classifiedy) transect was located at 90°, 180°, an
first is conifer woodlands, which are com2S €ither leafy spurge present or leafy7qe from the first. The primary (most
prised of ponderosa pin®ifus ponderosa  SPUrge absent. Based on results presentggndant) landcover type was determine
P. & C. Lawson) and juniped¢niperus N this study, all pixels with a MTMF frac- by walking the 4 transects and making :
scopulorum Sarg.) occurring on a plateaut'on greater than 0.10 and an infeasibility;js 5| estimate. If present, a secondar
of sedimentary rocks. The second langcore 1ess than 6.00 were classified ggngcover type was determined visually.
cover type is the riparian zones and draw afy spurge present. Because there IS 8 eafy spurge occurrence (presence c
which are characterized by willovgglix 0 adeoff between errors of omission andpsence) was determined visually whil
spp.), plains cottonwoodPepulus deltoides  COMmMission for overall accuracy, we alsQya|king the 4 transects. Separate tallie
Bartr. ex Marsh.), bur oalQUercus macro-  classified the AVIRIS image using MTMF yere made if leafy spurge occurred in th
carpa Michx.), and green ashrfaxinus threshold values of 0.05 and 0.20. primary land cover type and if leafy
pennsylvanica Marsh.). The third land spurge occurred anywhere at the groun
cover type is a northern mixed grass prairiéccuracy Assessment Procedures  reference site. Because the sites were ir
composed of grasses, forbs, and sagebrusifo ensure that the various habitats itially selected on the basis of a Landsz
species. Leafy spurge is very well estabahich leafy spurge occurred were includclassification, and because the accurac

lished throughout the study area. ed in the selection of ground referencassessment required only occurrence dat
sites and that the sampling sites were wefjuantitative estimates of leafy spurge
Hyperspectral Image Analysis distributed geographically, a Landsat Tover were not made for this experiment

Thematic Mapper (14 June 1991) wa#\ map of each site was sketched to scals

used to perform an initial land-cover clasdocumenting the distribution of the prima-
ification of the study area to locate 3y and secondary cover types and the di
nd-cover types (prairie, riparian, andribution of leafy spurge in the plot.

Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) data were
acquired over the study area on 6 Jul. 19

by the National Aeronautics and Spacconifer woodland). Eighty-five points

Administration’s Jet Propulsion )
Laboratory (Pasadena, Calif.). TheVere randomly selected within each covespectral reflectance data

AVIRIS sensor has 224 contiguous bandy/Pe: resulting in a total of 255 ground ref- - Reflectance spectra were acquired in th
from about 400 to 2500 nm wavelength€'€NCe sites. To minimize errors due ige|q in June 1999, before the AVIRIS
each band is about 10 nm wide (Green &anges in leafy spurge cover and distrithight, using an Analytical Spectral
al. 1998). The sensor was flown on an grytion, ground reference sites were V'S'te@evices, Inc. (Boulder, Colo.) Fieldspec
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UV/VNIR Spectroradiometer. This instru- 10
ment measures spectral radiant flux dens ’
ties from 350 to 1050 nm wavelength. All L
measurements were made with the bai Leafy spurge bracts
optic tip at a height of 1.3 m above the ~ 0.8 ™" Leafy spurge leaves
ground, resulting in a field-of-view diame- —=—- Rumex

ter of about 0.5 m. About every 2 to & ——— Grass

minutes, measurements were made of
white reference panel (Spectralon); spec
tral reflectances were calculated from th
ratio of the target data to the white pane
reading. These data were used to verit
identification of the spectral endmember:
of leafy spurge.

o o o
- o o

Reflectance

o
(V)

Results and Discussion

The flowering shoots of leafy spurge L ' L L . ' . . : . .
have much higher reflectance from 525 t 400 500 600 700 800 900 1000
650 nm and from 750 to 900 nm wave
length compared to non-flowering shoot:
of leafy spurge, shoots of curly dock
(Rumex crispus L.) and clumps of grass Fig. 1. Reflectance spectra of flowering shoots of leafy spurge, non-flowering shoots of leafy spurge
(Fig. 1). The higher reflectance of flower- shoots of curly dock Rumex crispusL.), and a mixture of native grasses.
ing leafy spurge shoots in the green

(500-550 nm) and yellow (550-600 nM}pe result of a wavelength-independenare bright orange, showing the contribu
portions of the spectrum (500-600 nm) igncrease in brightness. Thus, the portion dfon of the yellow-green flowering bracts
expected because its visual conspicuoUgse spectrum that uniquely identifies flow-to the red and green bands. However, the
ness. The higher near-infrared (750-90@ing |eafy spurge is the yellow-green.  are many pixels in the left half of the
nm) reflectance of flowering leafy spurge Figure 2 shows the average of greerimage that were predicted to have leaf
may be an effect of sample selection; neafaq “and near-infrared pixel reflectances ispurge present (Fig. 3). These areas are
infrared reflectance usually increases with gray-scale image centered around Devilsoodlands or in rugged terrain, where
increasing plant density (Tueller 1989;rower National Monument in order tovisual inspection of AVIRIS image did not
Everitt et al. 1995). Another reason for th@ocate areas of leafy spurge occurrenceletect leafy spurge infestation. It is no
high near-infrared reflectance is that leafy-jgyre 3 shows the Mixture Tunedknown if high-spatial-resolution, color-
spurge is a dicot; the other dicot, curlfjatched Filter (MTMF) abundances.infrared photographs could be used tc
dock, also has a high near-infrareqyych, put not all, of the leafy spurge indetect spurge in these wooded areas.

reflectance compared to native grassege study area is located along the Bell From Parker Williams and Hunt (2002),
Because flowering leafy spurge shootgqoyrche River and its tributaries (Fig. 2)the slope between MTMF abundance an
have the same reflectances in the violefrhese are the areas with very high valudeafy spurge cover was significantly less
blue (400-500 nm) and orange-rethf MTMF abundance (Fig. 3). Using athan unity (0.745 4©.0622) and the inter-
(600-700 nm) portions of the spectrumgise color composite of a green band, eept was significantly greater than zere
(Fig. 1), the increased reflectance in thgaq hand and a near-infrared band, areas @ 0727_+0.0267) for a combined regres-
yellow-green and near-infrared was nofeafy spurge along the Bell Fourche Rivesion with all cover types. The positive

Wavelength (nm)

Table 1. Error matrix of leafy spurge occurrence (presence or absence) in the primary land cover type. The threshold value dké&tl Tuned Matched
Filtering (MTMF) abundance was 0.10, below which leafy spurge is classified as absent on the image. A remotely-sensed pixelb@apmprised of
a mixture of land cover types, the primary land cover type dominates the spectral reflectance of that pixel. Leafy spurge iassified as present on
the ground if it occurs only in the primary land cover type of a given pixel.

Ground Reference Data (Number of pixels in primary land cover type)

Present Absent
Image Row Commission
Classification Prairie Riparian Conifer Prairie Riparian Conifer Total Error
Present 27 26 10 2 2 3 70 10%
Absent 2 2 8 16 4 44 76 16%
Column total 29 28 18 18 6 47
Category Total 75 71 146
Omission Error 16% 10%

Correctly Classified = 127
Overall Accuracy = 86.99
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cover type was 86.99 % (Table 1). The
primary cover type dominates the pixel
reflectance, and detection of leafy spurg
in the primary land cover type is important
for comparison of MTMF with other
methods of classification accuracy asses:
ment (Hunt et al. 2003). Furthermore,
because the amount of the primary lan
cover type is greater, the amount of spurg
is expected to be greater, hence it shoul
be easier to detect leafy spurge occul
rence.

A pixel on the map classified as leafy
spurge was leafy spurge on the groun
90% of the time (user’s accuracy); anc
84% of the time, the AVIRIS data correct-
ly mapped areas that were leafy spurge ©
the ground (producer’s accuracy). The
errors of omission and commission for the
absence of leafy spurge were 10% and 1
%, respectively (Table 1). The majority of
classification errors occurred when the
AVIRIS data failed to detect and map
some areas of leafy spurge in the stud
area (false negatives). In contrast, fa
fewer sites were mapped as leafy spurge
. 1 , the AVIRIS imagery that were not leafy

5 F e spurge on the ground (false positives).
&) "-'_ When examining the patterns of errot
Y -(ﬂ*\?j A among the different vegetation types, th
» l . \ﬂl ‘h

e - o \ highest number of classifications errors
x e ‘ occurred in the conifer woodlands (Table

: : 1). A total of 11 sites (8 false negatives
Fig. 2. Airborne Visible Infrared Imaging Spectrometer (AVIRIS) image with Devils Tower and 3 false positives) were misclassified ir
National Monument in the center. The upper left corner of the image points north. The gray- this vegetation type as compared to 4 eac
scale values are the averages of bands 23 (green), 33 (red) and 53 (near-infrared), which shovfgr the riparian and prairie sites. Eight of
the Bell Fourche river and coniferous woodlands as dark gray, prairie as medium gray, and 12 of the false negative errors occurre
rocks, bare soil, and agricultural fields as light gray. when the AVIRIS imagery failed to detect

) ) o o ) leafy spurge in conifer woodland on the
intercept of the regression equation indiand commission based on detection of vaground (Table 1). This was most likely

cates there may be some pixels that haweus soil minerals. We do not know if it iSque to the interference of the conifer tree
no flowering leafy spurge, but the abuna coincidence that 0.10 is approximatelyanopy and resulting shadows cast by th
dance value may indicate its presencesqual to the regression intercept plus §ee crowns. However, the success o
which is a false-positive error or an errostandard error. detecting spurge in the understory o
of commission. The manual (RSl 1999) Using a threshold value of 0.10 forggnifer woodlands about half the time
recommends a threshold of 0.10 as a goa@bundance, the overall accuracy for mapngjcates that MTMF analyses are very
compromise between errors of omissioping leafy spurge in the in the primarypromising.

o

Table 2. Error matrix of leafy spurge occurrence (presence or absence) in the image pixel. The threshold value of Mixed Tunedtdfied Filtering
(MTMF) abundance was 0.10, below which leafy spurge is classified as absent on the image. Leafy spurge is classified as poesére ground if it
occurs anywhere in the remotely-sensed pixel.

Ground Reference Data (Number of pixels in primary land cover type)

Present Absent
Image Row Commission
Classification Prairie Riparian Conifer Prairie Riparian Conifer Total Error
Present 29 28 13 0 0 0 70 0%
Absent 2 1 4 16 5 48 76 9%
Column total 31 29 17 16 5 48
Category Total 7 69 146
Omission Error 9% 0%

Correctly Classified = 139
Overall Accuracy = 95.21
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accuracy is acceptable. In fact, the accep
able level of accuracy is a project-base
decision that will vary depending on the
end utilization of the derived map and the
needs of the end user (Congalton an
Green 1999). We achieved very high accL
racies because we used a powerful ne
technique with one of the best airborne
sensors available for a simple classifica
tion of leafy spurge occurrence. Most
accuracy assessments are for classifyir
all land cover types, not just 1 or 2.
Furthermore, we achieved the very higt
accuracies because the timing of th
AVIRIS overflight was near the peak of
the flowering season for leafy spurge
Earlier or later overflights would have
missed much of the leafy spurge becaus
non-flowering leafy spurge has a similar
spectrum as some other co-occurring vec
etation (Fig. 1).

There are several characteristics of leaf
spurge that make it an ideal species fc
detection from remotely sensed data
therefore caution must be fostered whe
considering mapping other invasive
species using hyperspectral data. Leaf
spurge grows in large dominant stands, i
a robust plant with a dense canopy, an
has an extended period of flowering.
Obviously, there is difficulty in mapping

- any species under tree canopies usin

* . remote sensing. Although this is one limi-
Fig. 3. Abundance image of leafy spurge from the Mixture Tuned Matched Filtering (MTMF) tation of the method, results demonstrate
using the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) image in Fig. 2. The gray- that leafy spurge growing in the understo
scale image is black for areas with an abundance = 0.0, bright white for areas with an abun- ry of woodland areas was often detectabl
dance of 1.0, and linearly scaled for intermediate MTMF abundances. The classification thresh- jn the AVIRIS imagery. However, even
old for detection of leafy spurge was set at 0.10. with these limitations, hyperspectral
remote sensing data and the MTMF tech

Remotely-sensed pixels generally reprebetween the number of false negative angique provide an automated, accurat:
sent a mixture of land cover types on théalse positive errors. method of mapping leafy spurge over larg
ground and the secondary land cover typesLeafy spurge was mapped with an overer areas.
can influence the pixel’s reflectance specall accuracy ranging from 75% to 97% One of the most likely uses for a region-
trum. Table 2 presents the error matrixlepending on the criteria employed (Tabl@! leafy spurge map would be to track
when leafy spurge was present anywher®). Using a threshold value of 0.10 an@¢hanges in leafy spurge distribution ove
in the pixel, not just in the primary landneglecting land cover type as an importariime due to population spread and contrc
cover class. The overall accuracyariable, the overall accuracy is 95%practices. With repeatable, consisten
increased to 95.21%. The MTMF methodTable 2). Overall accuracies for land-mapping methodology the level of accura
failed to detect 7 sites where leafy spurgeover classifications reported in the literaCy attained in this study would provide
was present on the ground, but had ntre vary widely. Furthermore, there is nd/ery accurate representations of leaf
false positive errors (Table 2). general consensus as to what level @ipurge distribution. The increasing avail-

Adjustment of the threshold value is a

trade-off between the number of false posTable 3. Accuracy of leafy spurge detection (presence or absence) for the primary land cover type
itives and the number of false negatives at different threshold values of Mixed Tuned Matched Filtering (MTMF) abundance. Below the

Using a threshold value of 0.05 decrease threshold MTMF value, leafy spurge is classified as absent.
the overall accuracy and the accuracy fo
each land cover type (Table 3) by increas
ing the number of false positives. Using ¢

MTMF Ground Primary Land Cover Type
Threshold  Classification Prairie Riparian Conifer Overall

threshold value of 0.20 also decreased th%-02 1° land cover 0.830 0.794 0.754 0.788

. 0. pixel 0.894 0.912 0.877 0.890
overall accuracy (Table 3) by increasingy 1° land cover 0.915 0.882 0.831 0.870
the number of false negatives. Thereforeg 19 pixel 0.957 0.971 0.938 0.952
the recommended threshold value of 0.110.20 1° land cover 0.851 0.853 0.831 0.842
(RSI 1999) was indeed a good tradeof0.20 pixel 0.915 0.941 0.923 0.925
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